Using Multi-armed Bandit to Solve Cold-Start Problems in Recommender Systems at Telco
نویسندگان
چکیده
Recommending best-fit rate-plans for new users is a challenge for the Telco industry. Rate-plans differ from most traditional products in the way that a user normally only have one product at any given time. This, combined with no background knowledge on new users hinders traditional recommender systems. Many Telcos today use either trivial approaches, such as picking a random plan or the most common plan in use. The work presented here shows that these methods perform poorly. We propose a new approach based on the multi-armed bandit algorithms to automatically recommend rate-plans for new users. An experiment is conducted on two different real-world datasets from two brands of a major international Telco operator showing promising results.
منابع مشابه
Cold-start Problems in Recommendation Systems via Contextual-bandit Algorithms
In this paper, we study a cold-start problem in recommendation systems where we have completely new users entered the systems. There is not any interaction or feedback of the new users with the systems previoustly, thus no ratings are available. Trivial approaches are to select ramdom items or the most popular ones to recommend to the new users. However, these methods perform poorly in many cas...
متن کاملTransferable Contextual Bandit for Cross-Domain Recommendation
Traditional recommendation systems (RecSys) suffer from two problems: the exploitation-exploration dilemma and the cold-start problem. One solution to solving the exploitationexploration dilemma is the contextual bandit policy, which adaptively exploits and explores user interests. As a result, the contextual bandit policy achieves increased rewards in the long run. The contextual bandit policy...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملAn ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملDesign a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm
One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...
متن کامل